Projectile Motion Formulas

The most commonly used projectile motion formula is $h(t)=-\frac{1}{2} g t^{2}+v_{0} t+h_{0}$ where

$$
\mathrm{g}=\text { gravity }, v_{0}=\text { initial velocity, and } h_{0}=\text { initial height. }
$$

When you are working in feet/time, gravity is 32 feet/second.
When you are working in meters/second, gravity is 9.8 meters/second.

Please read every scenario carefully. Then answer the following questions.

1. A rocket is launched from atop a 101 -foot cliff with an initial velocity of 116 feet/second. Use the quadratic formula to find out how long the rocket with take to hit the ground after it is launched. Round to the nearest second.
2. A ball is thrown upward from a height of 15 feet with initial upward velocity of 5 feet/second. Use the quadratic formula to find out how long will it take for the ball to hit the ground?
3. You are trying to dunk a basketball. You need to jump 2.5 feet in the air to dunk the ball. The height that your feet are above the ground is given by the function $h(t)=-16 t^{2}+12 t$. What is the maximum height your feet will be above the ground? Will you be able to dunk the basketball?

Projectile Motion Formulas
The most commonly used projectile motion formula is $h(t)=-\frac{1}{2} g t^{2}+v_{0} t+h_{0}$ where $\mathrm{g}=$ gravity, $v_{0}=$ initial velocity, and $h_{0}=$ initial height.

When you are working in feet/time, gravity is 32 feet/second.
4. An amateur rocketry club is holding a competition. A rocket is launched from the ground with an initial velocity of 315 feet $/$ second. If there is a cloud cover at 1000 feet, determine how long the rocket is out of sight.

