1. Which is an equation of the parabola graphed in the accompanying diagram?



- 2. An equation of the axis of symmetry of the graph of  $y = x^2 + 6x + 9$  is x = -3. What is the *y*-coordinate of the turning point?
- 3. Which equation represents the parabola shown in the accompanying graph?



- A.  $f(x) = (x+1)^2 3$
- B.  $f(x) = -(x-3)^2 + 1$
- C.  $f(x) = -(x+3)^2 + 1$
- D.  $f(x) = -(x-3)^2 3$

4. The equation  $y = -x^2 - 2x + 8$  is graphed on the set of axes below.



Based on this graph, what are the roots of the equation  $-x^2 - 2x + 8 = 0$ ?

- A. 8 and 0 B. 2 and -4
- C. 9 and -1 D. 4 and -2
- 5. Which is an equation of the axis of symmetry of the parabola whose equation is  $y = 2x^2 3x + 4$ ?
  - A.  $x = -\frac{3}{4}$ B.  $x = \frac{3}{4}$ C.  $y = -\frac{3}{4}$ D.  $y = \frac{3}{4}$
- 6. If the turning point of a parabola is (4, -3) and the axis of symmetry is parallel to the *y*-axis, then the equation of the axis of symmetry is
  - A. x = -3 B. y = -3
  - C. x = 4 D. y = 4

## **Graphing Parabolas**

- 7. Which is true of the graph of the parabola whose equation is  $y = x^2 2x 8$ ?
  - A. The *x*-intercepts are at x = 2 and x = -4.
  - B. The only *x*-intercept is at x = 4.
  - C. The x-intercepts are at x = 4 and x = -2.
  - D. There are no *x*-intercepts.

8. The graph of which equation contains a maximum point?

A. y = 2 B. y = -2

- C.  $y = x^2$  D.  $y = -x^2$
- 9. What is the minimum point of the graph of the equation  $y = 2x^2 + 8x + 9$ ?

A. (2,33) B. (2,17)

C. (-2, -15) D. (-2, 1)

## Acces format version 4.4.158

© 1997–2011 EducAide Software Licensed for use by Problem-Attic

Graphing Parabolas 02/16/2013

| 1.<br>Answer: | С |
|---------------|---|
| 2.<br>Answer: | 0 |
| 3.<br>Answer: | С |
| 4.<br>Answer: | В |
| 5.<br>Answer: | В |
| 6.<br>Answer: | С |
| 7.<br>Answer: | С |
| 8.<br>Answer: | С |
| 9.<br>Answer: | D |