What are the roots of the equation $ax^2 + bx + c = 0$? 1.

$$A. \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{4a}$$

$$B. \quad x = \frac{b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$C. \quad x = \frac{-b + \sqrt{b^2 \pm 4ac}}{2a}$$

$$D. \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Which statement best explains why there is no real 2. solution to the quadratic equation $2x^2 + x + 7 = 0$?
 - The value of $1^2 4 \cdot 2 \cdot 7$ is positive.
 - The value of $1^2 4 \cdot 2 \cdot 7$ is equal to 0.
 - The value of $1^2 4 \cdot 2 \cdot 7$ is negative.
 - The value of $1^2 4 \cdot 2 \cdot 7$ is not a perfect square.

The solution to the quadratic equation $2x^2 + 5x - 1 = 0$ is

A.
$$\frac{5 \pm \sqrt{17}}{4}$$

A.
$$\frac{5 \pm \sqrt{17}}{4}$$
 B. $\frac{-5 \pm \sqrt{17}}{4}$

C.
$$\frac{5 \pm \sqrt{33}}{4}$$

D.
$$\frac{-5 \pm \sqrt{33}}{4}$$

The roots of the equation $2x^2 + 7x - 3 = 0$ are

A.
$$-\frac{1}{2}$$
 and -3 B. $\frac{1}{2}$ and 3

B.
$$\frac{1}{2}$$
 and 3

C.
$$\frac{-7 \pm \sqrt{73}}{4}$$
 D. $\frac{7 \pm \sqrt{73}}{4}$

D.
$$\frac{7 \pm \sqrt{73}}{4}$$

- The roots of the equation $x^2 10x + 25 = 0$ are
 - imaginary
 - B. real and irrational
 - real, rational, and equal
 - real, rational, and unequal

Acces format version 4.4.158 © 1997–2011 EducAide Software Licensed for use by Problem-Attic

Quadratic Formula 02/16/2013

1. Answer: D
2. Answer: C
3. Answer: D
4. Answer: C
5.

Answer:

C